Probiotic effects of orally administered *Lactobacillus salivarius* WB21-containing tablets on periodontopathic bacteria: a double-blinded, placebo-controlled, randomized clinical trial

Abstract

Aim: This study was designed to evaluate whether the oral administration of lactobacilli could change the bacterial population in supra/subgingival plaque.

Material and Methods: Sixty-six healthy volunteers without severe periodontitis were randomized into two groups to receive lactobacilli or placebo for 8 weeks (8W): the test group (n = 34) received 2.01 × 10⁹ CFU/day of *Lactobacillus salivarius* WB21 and xylitol in tablets; the control group (n = 32) received placebo with xylitol. Supra/subgingival plaque samples were collected at the baseline and after 4 weeks (4W) and 8W. The bacterial amounts in plaque samples were analysed by quantitative real-time polymerase chain reaction.

Results: The numerical sum of five selected periodontopathic bacteria in the test group was decreased significantly in subgingival plaque at 4W (odds ratio [OR] = 3.13, 95% confidence intervals [CI] = 1.28–7.65, *p* = 0.012). Multivariate analysis showed that significantly higher odds were obtained for the reduction of *Tannerella forsythia* in subgingival plaque of the test group at both 4W (OR = 6.69, 95% CI = 2.51–17.9, *p* < 0.001) and 8W (OR = 3.67, 95% CI = 1.45–9.26, *p* = 0.006).

Conclusion: Oral administration of probiotic lactobacilli reduced the numerical sum of five selected periodontopathic bacteria and could contribute to the beneficial effects on periodontal conditions.

Conflict of interest and sources of funding statement

None of the other authors declare any potential conflicts of interests.

Financial support for this study was provided by Wakamoto Pharmaceutical Co., Tokyo, Japan, and no other external funding was used. Two of the authors (S. Nakaya and H. Hirata) are former employees of Wakamoto Pharmaceutical Co.

Probiotics are live microorganisms, which, when administered in an adequate amount, confer a health benefit on the host (FAO/WHO 2001). The effect of probiotic therapy has been studied extensively for a variety of systemic indications and medical disorders. For example, the potential benefits of probiotics have been studied in gastrointestinal disorders (Naidu et al. 1999, Vanderhoof et al. 1999), gynaecology (Hilton et al. 1995, McLean & Rosen stein 2000, Reid et al. 2003), and atopic eczema (Kalliomaki et al. 2001). Probiotic bacteria can provide health benefits to the host by (1) providing nutrients and cofactors to the host, (2) competing directly with pathogens, (3) interacting with pathogen virulence factors, and (4) stimulating host immune responses (Saier & Mansour 2005). Thus, therapeutic targets for probiotics are now...
widely distributed among infectious and non-infectious diseases.

Dental caries and periodontitis are the most common infectious diseases in humans (Çaglar et al. 2005). Recently, there has been increasing interest in probiotic control against these oral infections, and a number of clinical trials have been conducted to elucidate the possible impact on oral health. Twetman & Stecksn-Blicks (2008) reviewed these trials and concluded that probiotic intervention in childhood may hamper the presence of mutans streptococci in saliva, possibly reducing the risk of dental caries. However, only limited information is available regarding the effect of probiotics on periodontal health and clinical conditions. Krasse et al. (2006) first showed decreased gingival bleeding and reduced gingivitis by the administration of probiotic Lactobacillus reuteri. It was reported recently that oral administration of probiotic Lactobacillus salivarius WB21 successfully improved the periodontal condition of healthy volunteers, especially for smoker subjects, but not for non-smokers (never/former smokers), in a double blind, placebo-controlled, randomized clinical trial (Shimauchi et al. 2008).

Probiotic intervention in the oral cavity is considered to exert its effect by microbiological interference with preexisting microbiota and supposed pathogens. Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola are widely regarded as major periodontal pathogens (Socransky et al. 1998). Aggregatibacter actinomycetemcomitans and Prevotella intermedia have also been found in subgingival lesions in periodontitis patients (Ashimoto et al. 1996, Zambon 1996, Loomer 2004). Regarding the probiotic effects on periodontal pathogens, Grudianov et al. (2002) reported that the use of probiotic tablets was effective for the normalization of microbiota in periodontitis and gingivitis patients as compared with a control group. In Japan, Ishikawa et al. (2003) and Matsuoka et al. (2006) reported that the administration of L. salivarius T12711 (LS1) to healthy subjects neutralized the pH of saliva and considerably decreased the numbers of black-pigmented anaerobic rods in saliva. Taking these previous reports together, probiotics may exert beneficial effects not only on the clinical condition of the oral cavity but also on the microbiota of periodontal tissues. Neverthe-

less, the effects of probiotics on periodontopathic bacteria in the oral cavity have not been fully elucidated.

Lactobacilli and bifidobacteria are the bacteria that are used most frequently as probiotics. Lactobacilli are indigenous bacteria colonizing the oral cavity and digestive tract and have been shown to play key roles in the prevention and treatment of gastrointestinal disorders (Reid et al. 1990). Lactobacilli constitute approximately 1% of cultivable oral microbiota (Marsh & Martin 1999). L. salivarius strain WB21 was selected as a probiotic, which was bred selectively from L. salivarius WB1004 (Aiba et al. 1998) by a low-pH treatment (pH 1.2) to exert a probiotic effect in the gastrointestinal tract. This strain is resistant to gastric acid and nominated as a candidate probiotic bacteria. Lactic acid bacteria can produce different antimicrobial components including organic acids, hydrogen peroxide, low-molecular-weight antimicrobial substances, bacteriocins, and adhesion inhibitors (Silva et al. 1987). These antimicrobial components should also be effective in the inhibition of periodontopathic bacteria.

The aim of this study was to evaluate whether the oral administration of L. salivarius WB21 could reduce the levels of periodontopathic bacteria in the oral cavity. For this purpose, a double blind, randomized, placebo-controlled clinical trial was conducted in healthy volunteers without severe periodontitis.

Material and Methods

Subjects and study design

This study was approved by the Research Ethics Committee of Tohoku University Graduate School of Dentistry. The characteristics of the study subjects and the methods used in the intervention study were detailed previously (Shimauchi et al. 2008). The important aspects are described briefly below.

Briefly, 71 healthy volunteers were recruited from company workers (Wakamoto Pharmaceutical Co., Tokyo, Japan) and each provided written informed consent for this study. The recruits were outwardly healthy and further confirmed to meet the following criteria: (1) not currently visiting their dentists for treatment; (2) not using probiotic supplements; (3) free of adverse reactions to lactose or fermented milk products; and (4) not taking antibiotics within the last month.

Clinical parameters, including probing pocket depth (PPD), gingival index (GI; Löe & Silness 1963), bleeding on probing (BOP; Ainamo & Bay 1975), and plaque index (PII; Silness & Löe 1964), were obtained from the Ramfjord’s six teeth (Ramfjord 1959) at baseline (BL) and severe periodontitis subjects were excluded from the study. The exclusion criteria for those applicants were (1) PPD ≥ 6 mm for at least one periodontal pocket of the examined teeth and (2) the presence of teeth with excess mobility and/or abscess formation. Four subjects were excluded and 67 eligible subjects (58 males and nine females; mean age 44.9 ± 8.3 years, range 32–61 years) were allocated randomly to the test and control groups, according to gender, age, and smoking status (Fig. 1) by one of the authors (H. H.), who had little involvement with any assessments, using a randomization table. H. H. was independent throughout the study and held the randomization code until the start of data analysis. The randomization code was broken when all microbiological and clinical data were gathered after the 8-week (8W) intervention period.

A randomized, double-blinded, placebo-controlled study design with two parallel groups was used in this study. The subjects were randomized into two groups to receive test (WB21 group) and control (placebo group) treatments after the BL examination. There were no significant differences between the WB21 and placebo groups randomized according to gender, age, smoking habits, and clinical features at BL (Table 1). Tablets containing L. salivarius WB21 (6.7 × 10^6 CFU/tab) and xylitol (280 mg/tab) (WB21; WAKAMATE D® Waka-moto Pharmaceutical Co.,) were used for the WB21 group, and only xylitol was used for the placebo group. Each subject was instructed to place one tablet in the mouth and allow it to dissolve without chewing, three times a day for 8W. Participants in both groups were instructed not to change their oral hygiene regimens and not to take other probiotic products throughout the test period. Neither professional prophylaxis nor tooth brushing instruction was performed during or before the experimental period.

Collection of samples

Both supragingival and subgingival plaque samples were taken from the mesial
sites of the Ramfjord’s 6 teeth at BL and after 4 weeks (4W) and 8W. Supragingival plaque samples were taken using sterile toothpicks from the mesial sites of the target teeth and gathered in a 1.5-ml sterile tube. For subgingival plaque sampling, the teeth were isolated with three cycles of freezing in a 65°C freezer, followed by thawing in a 65°C water bath. The mixture was then extracted with equal volumes of phenol (saturated with 10 mM Tris-HCl, pH 8.0) and phenol–chloroform–isoamyl alcohol (25:24:1). Bulk nucleic acids were precipitated from the solution using isopropyl alcohol, followed by centrifugation (9510 g) for 30 min. The DNA precipitate was washed with 70% ethanol and resuspended in 100 μl of TE (10 mM Tris-HCl, pH 8.0, 1 mM EDTA).

Quantitative real-time polymerase chain reaction (PCR) amplifications were performed to detect five species of selected periodontopathic bacteria: A. actinomycetemcomitans, P. intermedia, P. gingivalis, T. denticola, and T. forsythia. The sequences of the primers and the strains used for the standard curves are listed in Table 2. The PCR reaction was performed in a 50 μl final volume containing 5 μl template DNA, 25 μl SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA), and 0.5 μl of each primer, and amplified using an ABI PRISM 7300 Real-Time PCR System (Applied Biosystems) programmed for an initial denaturation step at 95°C for 10 min., followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. each, Fluorescent products were detected during the annealing–extension step. The bacterial cell numbers per sample were calculated using the standard curve made from each tested bacterial cells as reported previously (Sakamoto et al. 2001).

Table 1. Clinical characteristics of the subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>WB21 group</th>
<th>Placebo group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>34</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Gender (male:female)</td>
<td>29:5</td>
<td>28:4</td>
<td>0.79</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>45.0 ± 8.3</td>
<td>44.8 ± 8.4</td>
<td>0.87</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>Current</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Clinical parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPD (mm)</td>
<td>2.5 ± 0.1</td>
<td>2.4 ± 0.2</td>
<td>0.06</td>
</tr>
<tr>
<td>GI</td>
<td>0.8 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>0.11</td>
</tr>
<tr>
<td>BOP (%)</td>
<td>19.2 ± 2.4</td>
<td>13.9 ± 2.5</td>
<td>0.07</td>
</tr>
<tr>
<td>PI</td>
<td>0.7 ± 0.1</td>
<td>0.6 ± 0.1</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Number or mean ± standard error (SE).

Student’s t-test was used if the variable was continuous with a normal distribution and Mann–Whitney’s U-test if the variable was continuous but with a skewed distribution. For categorical variables, χ² test or Fisher’s Exact test were performed.

BOP, bleeding on probing; GI, gingival index; PI, plaque index; PPD, probing pocket depth.

Microbiological examination

Bacterial DNA was extracted from plaque as described previously (Sakamoto et al. 2001). In brief, lysozyme (final concentration 5 mg/ml) and N-acetylmuramidase (final concentration 0.1 mg/ml) were added to each suspension. After incubation at 37°C for 1 h, protease K and sodium dodecyl sulphate were added to a final concentration of 2 mg/ml and 1% (w/v), respectively. The mixture was incubated at 50°C for 30 min. Nucleic acids were released by three cycles of freezing in a −80°C freezer, followed by thawing in a 65°C water bath. The mixture was then amplified using an ABI PRISM 7300 Real-Time PCR System (Applied Biosystems) programmed for an initial denaturation step at 95°C for 10 min., followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. each. Fluorescent products were detected during the annealing–extension step. The bacterial cell numbers per sample were calculated using the standard curve made from each tested bacterial cells as reported previously (Sakamoto et al. 2001).

Statistical analysis

Demographic and BL characteristics were compared between the groups using Student’s t-test for continuous variables with a normal distribution, Mann–Whitney’s U-test for variables with a non-normal distribution, and χ² test or Fisher’s exact test for categorical variables.

The number of bacteria was calculated for each plaque sample from the threshold cycle values using the constructed standard curves. As the detection limit for the bacterial count was ≤100 using the present PCR system, the lowest value was given as 100 for the count of samples under the measurable limit. Both total bacterial counts and the sum of five periodontal pathogens in plaque samples were continuous, but skewed and distributed non-normally. A proportional odds logistic regression model (McCullagh 1980) was used to compare the microbiolog-
Table 2. Target bacteria and the primers used in this study

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence (5′–3′)</th>
<th>Strains for standard curve</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregatibacter actinomycetemcomitans</td>
<td>CTTACCTACTCGATTACCCGAAA</td>
<td>A. actinomycetemcomitans</td>
<td>Maeda et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>ATGCAGCACTGGTCCTCAGCA</td>
<td>JCM2434</td>
<td></td>
</tr>
<tr>
<td>Prevotella intermedia</td>
<td>AATACCGGATTTGCCTCTCAA</td>
<td>P. intermedia ATCC25611</td>
<td>Maeda et al. (2003)</td>
</tr>
<tr>
<td>Porphyromonas gingivalis</td>
<td>CTTAGACTCTCCAGGCGGAGGACG</td>
<td>P. gingivalis JCM8525</td>
<td>Maeda et al. (2003)</td>
</tr>
<tr>
<td>Treponema denticola</td>
<td>AAGGAAAGCGGCTTTTCACCA</td>
<td>T. denticola JCM5225</td>
<td>Sakamoto et al. (2001)</td>
</tr>
<tr>
<td>Tannera forsythia</td>
<td>TAAATCCGAGATGGTCTTGACATCCGGGAA</td>
<td>T. forsythia ATCC43037</td>
<td>Suzuki et al. (2004)</td>
</tr>
<tr>
<td>Universal primer</td>
<td>GTGCTGACGCGTCTGTCGA</td>
<td>P. gingivalis JCM8525</td>
<td>Maeda et al. (2003)</td>
</tr>
</tbody>
</table>

Table 3. Microbiological characteristics of the subjects

<table>
<thead>
<tr>
<th></th>
<th>Supragingival plaque</th>
<th>Subgingival plaque</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WB21 group</td>
<td>placebo group</td>
<td>p-value</td>
</tr>
<tr>
<td>Aggregatibacter actinomycetemcomitans</td>
<td>2.99 ± 0.21</td>
<td>3.52 ± 0.23</td>
<td>0.10</td>
</tr>
<tr>
<td>Prevotella intermedia</td>
<td>3.59 ± 0.29</td>
<td>3.96 ± 0.30</td>
<td>0.38</td>
</tr>
<tr>
<td>Porphyromonas gingivalis</td>
<td>2.98 ± 0.32</td>
<td>3.05 ± 0.32</td>
<td>0.82</td>
</tr>
<tr>
<td>Treponema denticola</td>
<td>2.98 ± 0.23</td>
<td>3.14 ± 0.22</td>
<td>0.42</td>
</tr>
<tr>
<td>Tannera forsythia</td>
<td>2.89 ± 0.21</td>
<td>3.16 ± 0.19</td>
<td>0.29</td>
</tr>
<tr>
<td>Sum of five periodontopathic bacteria</td>
<td>4.57 ± 0.26</td>
<td>5.02 ± 0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>8.86 ± 0.10</td>
<td>8.96 ± 0.12</td>
<td>0.44</td>
</tr>
</tbody>
</table>

	WB21 group	placebo group	p-value
Aggregatibacter actinomycetemcomitans	3.07 ± 0.23	3.40 ± 0.29	0.45
Prevotella intermedia	2.71 ± 0.19	2.79 ± 0.20	0.73
Porphyromonas gingivalis	2.99 ± 0.32	2.85 ± 0.28	0.95
Treponema denticola	3.01 ± 0.23	2.76 ± 0.23	0.46
Tannera forsythia	3.11 ± 0.22	3.58 ± 0.13	0.25
Sum of five periodontopathic bacteria	4.54 ± 0.26	4.77 ± 0.23	0.41
Total	8.23 ± 0.12	8.23 ± 0.12	0.86

Mean bacterial number (log10) ± standard error (SE). p-values are according to Mann–Whitney’s U-test.

Results

Compliance and adverse effects

The experiment was started in August 2005 and finished in October 2005. As reported previously (Shimauchi et al. 2005), one subject was lost in the control group during the 8W follow-up period. Sixty-six subjects, 34 in the test group and 32 in the placebo group, were analysed, and no adverse events were observed. The withdrawn subject took antibiotics after the 4W examination, because of respiratory infection and also stopped taking the tablets. However, this was judged not to be an adverse reaction related to this study.

Microbiological findings

The clinical characteristics of the WB21 and placebo groups at BL are summarized in Table 1. There were no significant differences at BL in any clinical parameter (PPD, GI, BOP, and PI). The microbiological characteristics of supragingival and subgingival plaque samples from both groups are also presented in Table 3. No significant differences between the groups were detected in terms of the total bacterial number or the number of any of five selected species of periodontopathic bacteria (A. actinomycetemcomitans, P. intermedia, P. gingivalis, T. denticola, and T. forsythia) in supragingival and subgingival plaque.

Figure 2 shows the changes in the numbers of total bacteria of supragingival and subgingival plaque samples within groups and between groups. The changes in the sum of five selected species of periodontopathic bacteria (A. actinomycetemcomitans, P. intermedia, P. gingivalis, T. denticola, and T. forsythia) in supragingival and subgingival plaque are displayed in Fig. 3. The sum of five periodontal pathogens in the subgingival plaque tended to decrease gradually in both groups. The difference between the groups was significant for subgingival plaque samples at 4W with estimated
OR = 3.13 (95% CI = 1.28–7.65, \(p = 0.012 \)) for the WB21 group. The representation of changes in individual bacterial number during the 8W intervention is displayed in Figs 4 and 5. In supragingival (Fig. 4) and subgingival (Fig. 5) plaque samples, there was no significant difference between the WB21 and the placebo groups in the direct count of any specific periodontopathic bacteria. However, as shown in Fig. 3, the sum of five bacteria was significantly lower in the WB21 group at 4W, and tended to be lower up to 8W as compared with the placebo group. A multivariate model was used after adjusting for bacterial counts at BL, PI, and smoking status, and only \(T. forsythia \) levels were significantly different between the groups (Table 4). The OR for reduction of \(T. forsythia \) in the WB21 group significantly increased at 4W and 8W as compared with the placebo group (4W: \(OR = 6.69; 95\% CI = 2.51–17.9; \ p < 0.001 \), and 8W: \(OR = 3.67; 95\% CI = 1.45–9.26; \ p = 0.006 \), respectively).

Discussion

The trial compared the effectiveness of orally administered \(L. salivarius \) WB21 on the microbiota of supra/subgingival plaque, especially on the fate of selected periodontopathic bacteria including \(A. actinomycetemcomitans, P. intermedia, P. gingivalis, T. denticola, \) and \(T. forsythia \). The present results showed a suppressive effect on the numerical sum of the counts of these periodontopathic bacteria in the subgingival plaque at after 4W of probiotic intervention. A significant reduction in \(T. forsythia \) at 4W and 8W was found in the subgingival plaque of the test group as compared with that of the placebo group. We previously reported that the impact of probiotic intervention with \(L. salivarius \) WB21 on clinical conditions of the same subjects enrolled in this RCT (Shimauchi et al. 2008). Briefly, significantly greater reductions of PI and PPD were found at 4W and 8W for current smokers in the WB21 group as compared with those in the placebo group, although all clinical indices improved for both groups. Taken together, oral probiotics with \(L. salivarius \) WB21 could be a useful clinical tool for the treatment and prevention of periodontal diseases by interfering with periodontal microbiota, especially by suppressing proposed pathogens.

Strains of \(Lactobacillus \) are known as major probiotic organisms in conjunction with \(Bifidobacterium \), and the antagonistic ability of these strains against common microbial pathogens in the gastrointestinal tract has been well established. Lactobacilli exert an antimicrobial activity in the gastrointestinal tract or urovaginal environment by producing antimicrobial substances and/or stimulating mucosal immunity (Servin 2004). Hydrogen peroxide, metabolites such as lactic acid, biosurfactants, and small antimicrobial pep-
interference with these bacteria. Very recently, Köll et al. (2008) reported the antimicrobial effects of oral lactobacilli including *L. salivarius* on the growth of oral pathogenic bacteria. The majority of lactobacilli suppressed the growth of *A. actinomycetemcomitans, P. gingivalis, P. intermedia*, and *S. mutans*. It has been reported that the acidic environment inhibited the growth of these bacteria (Takahashi & Schachtele 1990, Takahashi et al. 1997). Thus, the lactic acid produced by lactobacilli is a plausible explanation for the inhibitory interaction with these organisms.

However, no reports are available regarding direct microbial interactions between lactobacilli and *T. forsythia*, which showed a significant reduction in the subgingival microbiota in these subjects. The present study suggests that probiotic effects of *L. salivarius* WB21 do exist overlaying the perceived placebo effect in the test group.

It was also of concern whether the daily intake of *L. salivarius* WB21 may increase the risk of dental caries caused by lactobacilli-producing lactic acid, although no adverse effects were observed during the intervention until the 8W follow-up. Matsumoto et al. (2005) reported that superinfection of probiotic *L. salivarius* LR1952R with *S. mutans* MT8148 significantly increased caries scores compared with the placebo group (4W: OR = 8.00; 95% CI = 0.72–88.6; *p* = 0.09, and 8W: OR = 6.66; 95% CI = 0.39–113; *p* = 0.19, respectively), although a significant difference was not found between the groups (Table 4).

![Fig. 5. Changes in the mean number of selected five periodontopathic bacteria during 8 weeks (8W) of intervention of subgingival plaque samples.](image)

Table 4. Multivariable analysis of an improvement of the numbers of each species in subgingival plaque between the WB21 and the placebo groups.
cessfully decreased the numerical sum of five periodontopathic bacteria in subgingival plaque at 4W. A life-long need for plaque control arises for the treatment and prevention of periodontal diseases. As the intake of *L. salivarius* WB21 tablets is an easily introducible approach, probiotics may be provided as homecare supplements for preventing periodontal diseases. It is also well known that the re-emergence of periodontal pathogens is correlated with a lack of clinical improvement and an increased risk for disease relapse (Haffajee et al. 1997). Therefore, administration of *L. salivarius* WB21 probiotics as an adjunct to mechanical debridement might be an effective approach for the treatment of periodontitis. Probiotic therapy may be a biological approach for controlling oral microbiota to induce a beneficial shift away from pathogens controlling oral microbiota to induce a treatment of periodontitis. Probiotic therapy might be an effective approach for the adjunct to mechanical debridement of periodontopathic bacteria in subgingival plaque. It was also concluded that further studies are necessary in order to provide biological plaque control as an armamentarium of treatment options for periodontal diseases.

Acknowledgements

We thank Drs. Keiko Yamaki, Maiko Minambichi, and Yashuhiro Ito of the Division of Periodontology and Endodontology for their assistance in clinical examination and microbiological sampling of the subjects who participated in this study.

References

Clinical Relevance

Scientific rationale for the study: Lactobacilli are frequently used as probiotics to induce a beneficial effect on human health. However, little is known about the effect of probiotics on periodontal diseases.

Principal findings: After probiotic intervention with *L. salivarius* WB21 for 8W in healthy volunteers, the numerical sum of five selected periodontopathic bacteria in the test group was decreased significantly compared with the control group in subgingival plaque at 4W.

Practical implication: The present study suggests that a probiotic intervention could be a useful tool for the improvement of periodontal health.

Address:
Professor Hidetoshi Shimauchi
Department of Oral Biology
Division of Periodontology and Endodontology
Tohoku University Graduate School of Dentistry
Sendai 980-8575
Japan
E-mail: simauti@m.tains.tohoku.ac.jp